
Variational Barycentric Coordinates

ANA DODIK,MIT CSAIL, USA

ODED STEIN, University of Southern California and MIT CSAIL, USA

VINCENT SITZMANN,MIT CSAIL, USA

JUSTIN SOLOMON,MIT CSAIL, USA

Total Variation Surface ARAP

Fig. 1. Our method allows us to optimize various energies resulting in different sets of barycentric coordinates. This figure shows the result of using different

sets of coordinates on the tasks of color interpolation and mesh deformation. Minimizing total variation (TV) results in deformations that have an undesirable

rubbery appearance. However, our formulation allows us to address this issue by minimizing deformation-aware energies, such as the as-rigid-as-possible
(ARAP) energy.

We propose a variational technique to optimize for generalized barycentric
coordinates that offers additional control compared to existing models. Prior
work represents barycentric coordinates using meshes or closed-form for-
mulae, in practice limiting the choice of objective function. In contrast, we
directly parameterize the continuous function that maps any coordinate in
a polytope’s interior to its barycentric coordinates using a neural field. This
formulation is enabled by our theoretical characterization of barycentric
coordinates, which allows us to construct neural fields that parameterize
the entire function class of valid coordinates. We demonstrate the flexibil-
ity of our model using a variety of objective functions, including multiple
smoothness and deformation-aware energies; as a side contribution, we also
present mathematically-justified means of measuring and minimizing objec-
tives like total variation on discontinuous neural fields. We offer a practical
acceleration strategy, present a thorough validation of our algorithm, and
demonstrate several applications.

CCS Concepts: • Computing methodologies → Animation.

Authors’ addresses: Ana Dodik, anadodik@mit.edu, MIT CSAIL, USA; Oded Stein,
University of Southern California and MIT CSAIL, USA; Vincent Sitzmann, MIT CSAIL,
USA; Justin Solomon, MIT CSAIL, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0730-0301/2023/12-ART255
https://doi.org/10.1145/3618403

Additional Key Words and Phrases: barycentric coordinates, neural fields,
geometry processing, deformation, inverse problem, partial differential equa-
tions, geometric variational problem.

ACM Reference Format:

Ana Dodik, Oded Stein, Vincent Sitzmann, and Justin Solomon. 2023. Varia-
tional Barycentric Coordinates. ACM Trans. Graph. 42, 6, Article 255 (De-
cember 2023), 16 pages. https://doi.org/10.1145/3618403

1 INTRODUCTION

Generalized barycentric coordinates are used to interpolate func-
tions defined on the vertices of a polytope to its interior, such as to
evaluate a function known only on the surface of a shape inside its
volume. They are also often used for cage-based deformation, with
the polytope serving as a deformation cage. In this setting, a user
deforms a mesh by moving the vertices of a low-resolution cage
that surrounds it. The positions of the transformed cage vertices are
then interpolated into its interior, and in particular onto the surface
of the mesh inside of it. Figure 1 demonstrates how generalized
barycentric coordinates can interpolate data and deform shapes
using a cage.

The barycentric coordinates associated to each point in the inte-
rior of the cage can be understood as a set of averaging weights, one
per cage vertex. These weights satisfy a number of mathematical
constraints: they must be non-negative, sum to one, and have a pre-
scribed expectation. This final reproduction constraint distinguishes

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3618403
https://doi.org/10.1145/3618403

255:2 • Dodik et al.

barycentric coordinates from more general skinning weights; to en-
sure that a linear deformation of the cage vertices leads to a linear
deformation field inside the cage, every point in the interior must
equal the linear combination of the cage vertices with its barycentric
coordinates as coefficients. Moreover, we might expect barycentric
weights to be smooth and/or local, although these considerations
may be understood as objectives rather than hard constraints.
Existing methods for computing barycentric coordinates typi-

cally fall into two categories. Classically, a number of barycentric
coordinate functions are expressed in closed-form [Ju et al. 2005;
Lipman et al. 2007] or via relatively simple algorithms. These co-
ordinates are fast to evaluate but often add assumptions on the
cage vertices (e.g., convexity) to satisfy the required properties of
barycentric coordinates; moreover, they are inflexible in the sense
that they each provide a single means of computing coordinates
rather than allowing users to optimize for coordinates best suited
for a given application. More recently, Joshi et al. [2007] and Zhang
et al. [2014] pose the computation of generalized barycentric coor-
dinates as a convex optimization problem. This approach promises
global satisfaction of the constraints defining barycentric coordinate
functions and suggests the possibility of optimizing for customized
barycentric weights for a given application or artistic intention, but
the current models rely on a mesh-based discretization and opti-
mization technique customized to a specific smoothness objective
functions.
In this paper, we introduce variational barycentric coordinates

(VBCs), a flexible mesh-free framework that allows us to optimize
for generalized barycentric coordinates given a boundary cage and
a differentiable objective. VBCs are built on a simple mathematical
observation, namely that all generalized barycentric coordinates
can be expressed as weighted averages of simplex barycentric coor-
dinates of all the simplices generated by connecting cage vertices.
With this observation in place, we can represent the set of general-
ized barycentric coordinates for a given cage using the machinery
of neural networks, which allow us to efficiently operate in the
high-dimensional space of all possible simplices. Beyond total vari-
ation, we can then optimize using customized objectives tailored to
different tasks and applications.

VBCs offer several departures from and advantages over classical
generalized barycentric coordinate functions. Most importantly, our
formulation is general and operates in the space of valid barycentric
coordinates by construction. We offer a differentiable representation
of the entire function class of barycentric coordinate functions, as
well as some examples for the possible design choices one could
make by incorporating different optimization objectives. We also
offer a mathematically justified means of computing and optimiz-
ing the total variation of our model in the presence of possible
discontinuities.
Furthermore, our formulation is defined in terms of the cage

vertices, allowing us to support cages composed of meshes, triangle
soups, or point clouds. When it is acceptable to restrict to fewer
degrees of freedom at the cost of excluding some possible coordinate
functions, we offer a practical modification to the algorithm that
not only enforces locality but also significantly reduces the memory
and compute required.

To demonstrate the benefits of our approach, we provide a thor-
ough qualitative evaluation as well as comparisons with previous
work. We additionally offer a quantitative analysis of the different
performance trade-offs introduced by our approach.

Contributions. In summary, we introduce:
• a mathematical formulation that expresses generalized barycen-
tric coordinates as convex combinations of simplex coordinates,

• a computational model that uses our formulation to constrain
neural networks to the function space of barycentric coordinates,

• heuristics that help make our model practically tractable while
simultaneously enforcing a notion of locality in our coordinates,

• a way of approximating and optimizing several common smooth-
ness energies—such as total variation and the Dirichlet energy—in
the context of discontinuous neural fields,

• experiments that demonstrate how our coordinates can be com-
bined with familiar deformation-aware energies or used to solve
inverse deformation problems, and

• a thorough evaluation and comparison that confirms the validity
and practical usefulness of our model on a variety of 2D and 3D
shapes.

2 RELATED WORK

2.1 Generalized Barycentric Coordinates

Manymethods have been proposed to compute generalized barycen-
tric coordinates. A complete survey is outside the scope of our discus-
sion; we refer the reader to existing surveys [Floater 2015; Hormann
and Sukumar 2017] for a comprehensive introduction. Here, we
mention a few particularly relevant works to our formulation.

Barycentric coordinates go back at least as far as Möbius [Coxeter
1969, p. 217], who used them to define a coordinate system on the
inside of a triangle, parametrized by the triangle vertex positions.
They have since been generalized to polygons [Floater 2003] and
higher dimensions [Floater et al. 2005; Ju et al. 2005].

In graphics and geometry processing, barycentric coordinates are
used for interpolation and deformation. The cage polygon/polyhedron
parameterizes motions of a complicated interior domain in 2D/3D
[Chen et al. 2010; Deng et al. 2020; Hormann and Sukumar 2008;
Huang et al. 2006; Li and Hu 2013; Lipman et al. 2007, 2008; Weber
et al. 2009]. Beyond these basic applications, barycentric coordi-
nates are a part of methods for distance computation [Rustamov
et al. 2009], image registration [Weistrand and Svensson 2015], mesh
generation [Gregson et al. 2011], finite elements [Wicke et al. 2007],
and subdivision [Liu et al. 2020].
Later works on generalized barycentric coordinates use the ge-

ometry of the domain’s interior to produce coordinates that are
aware of local distances; this approach yields more natural-looking
animations [Joshi et al. 2007]. Unlike early attempts to define gen-
eralized barycentric coordinate functions, many of these works
pose computation of the coordinates as an optimization problem
over the space of possible coordinate functions. The recent Local
Barycentric Coordinates [Zhang et al. 2014] are geometry-aware
barycentric coordinates obtained via minimizing an energy con-
taining the Total Variation (TV) of the coordinate functions. This
method was recently accelerated by Tao et al. [2019]. Wang et al.
[2015] optimize the Laplacian energy with a modified boundary

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:3

term to produce cage-free barycentric coordinates with simple con-
trol vertices instead of control cages. Stein et al. [2018] construct
cage-free barycentric coordinates using the Hessian energy with nat-
ural boundary conditions, later generalizing the method to curved
surfaces [Stein et al. 2020].
In general, closed-form expressions of geometry-aware, locally

supported barycentric coordinates are difficult to obtain. Anisimov
et al. [2017] provide closed-form locally-supported barycentric co-
ordinates using a Delaunay triangulation of the cage polygon, but
their method does not support polyhedra in 3D.

Lastly, Floater [1997] formulates one simple choice of barycentric
coordinates in the context of mesh parameterizations as a special
case of the formulation presented in §4.1. Besides the different ap-
plication domain, Floater’s formulation does not support polytopes
and is not guaranteed to satisfy the necessary properties on concave
polygons (see Figure 3 for a failure case). Importantly, our method
relies on a neural representation together with an optimization pro-
cedure, whereas Floater [1997] uses a closed-form formula. This is a
key component of our method, as one of our main goals is to enable
users to tune weights using arbitrary objectives.

2.2 Neural Networks for Interpolation and Deformation

Recentwork has demonstrated the potential of treating fully-connected
networks as continuous, memory-efficient representations of gen-
eral functions, shape parts, objects, or scenes by mapping each
coordinate to a value stored at that coordinate. These networks are
commonly referred to as neural fields [Xie et al. 2022]. Our method
parametrizes barycentric coordinates using neural fields.

In geometry processing, neural fields have been used to parame-
terize distributions over shape boundary vertices for Linear Blend
Skinning (LBS) [Jeruzalski et al. 2020]; note that LBS weights are
not the same as barycentric coordinates, as they do not satisfy the
reproduction property. Neural fields can also be used to forgo mesh
discretizations entirely and perform geometry processing tasks on
the field directly [Yang et al. 2021]. Yifan et al. [2020] use a neural
network to learn cage-based shape deformations. Neural representa-
tions are also popular to solve physics problems formulated as PDEs
on a variety of geometries [Li et al. 2021; Raissi et al. 2019; Rao et al.
2021; Sukumar and Srivastava 2022]. Deforming Neural Radiance
Fields (NeRFs) is a popular use-case for cage-based deformation
[Peng et al. 2022; Yuan et al. 2022], with applications such as model-
ing dynamic human bodies [Peng et al. 2021] or reconstructions of
scenes with deformation [Park et al. 2021].
Beyond neural fields, Tan et al. [2018] use variational autoen-

coders to model mesh deformation. Luo et al. [2020] model linear
elasticity using neural networks. Jiang et al. [2020] learn deforma-
tions by learning flows between shapes. Chentanez et al. [2020]
model deformations on triangle meshes using convolutional neural
networks. Aigerman et al. [2022] learn intrinsic mappings between
meshes using neural networks.

3 PRELIMINARIES

We will begin by introducing the broad mathematical definition
of generalized barycentric coordinates for an arbitrary polytope
cage P ⊂ R𝑑 with 𝐾 boundary vertices V(P) = {𝒗𝑖 | 1 ≤ 𝑖 ≤ 𝐾}.

We also include a brief review of the special case of barycentric
coordinates of triangles and tetrahedra in this section, as we will be
using them as a building block for our model.
We write barycentric coordinate functions for a polytope P as

functions 𝛼𝑖 : P → R+ and denote by 𝛼𝛼𝛼 = [𝛼1, . . . , 𝛼𝐾]⊤ the corre-
sponding vector-valued barycentric coordinate function. For 𝛼𝛼𝛼 to
be useful as interpolation weights, the definition of barycentric co-
ordinates includes a number of constraints that the functions must
satisfy [Floater 2015; Floater et al. 2006]. In particular, a function 𝛼𝛼𝛼
is said to be valid if it fulfills the barycentric coordinate constraints
for all 𝒙 ∈ P:
• Non-negativity. 𝛼𝑖 (𝒙) ≥ 0;
• Partition of unity.

∑
𝑖 𝛼𝑖 (𝒙) = 1;

• Reproduction.
∑
𝑖 𝒗𝑖𝛼𝑖 (𝒙) = 𝒙 ; and

• Lagrange property 𝛼𝑖 (𝒗 𝑗) = 𝛿𝑖 𝑗 ,
where 𝛿𝑖 𝑗 is the Kronecker delta. Previous work has additionally
identified locality—the idea that coordinates should be non-zero
only within a small neighborhood of their vertices—as an optional
desirable property for barycentric coordinates [Zhang et al. 2014].
As an example use case for generalized barycentric coordinates,

suppose we deform the polytope vertices 𝒗𝑖 to new positions 𝒗′
𝑖
. We

can extend this deformation to interior points 𝒙 via the following
map:

𝜑𝛼𝛼𝛼 (𝒙 ; P′) =
∑︁𝐾

𝑖=1 𝛼𝑖 (𝒙)𝒗
′
𝑖 . (1)

Thanks to the Lagrange property, we have 𝜑𝛼𝛼𝛼 (𝒗𝑖) = 𝒗′
𝑖
for all bound-

ary vertices 𝑖 . Moreover, thanks to the reproduction property, when
𝒗𝑖 = 𝒗′

𝑖
for all boundary vertices 𝑖 , the map becomes the identity:

𝜑𝛼𝛼𝛼 (𝒙) = 𝒙 .

Simplex barycentric coordinates. For triangles and tetrahedra, this
definition leads to unique barycentric coordinates. In particular, for
a triangle in the plane, T ⊂ R2 with vertices V(T) = {𝒗1, 𝒗2, 𝒗3},
and a point 𝒙 ∈ P, the triangle barycentric coordinates are the
solution to the linear system[

𝒗1 𝒗2 𝒗3
1 1 1

]
𝛼𝛼𝛼 (𝒙 ;T) =

[
𝒙
1

]
. (2)

As long as 𝒙 is inside the triangle and the 𝒗𝑖 are affinely independent,
the solution is unique and satisfies the desired constraints.

In the general case of an arbitrary cage, the linear system above
usually is underdetermined, and therefore, the barycentric coordi-
nate functions are not unique. Instead, they lay somewhere in the
feasible set defined by the constraints. The feasible setA of general-
ized barycentric coordinates at a point 𝒙 is a (𝐾−𝑑−1)-dimensional
simplex. To ensure that our computed coordinates always lie in A,
we need to optimize in the constrained space of feasible coordi-
nate functions rather than the larger space of all possible smooth
functions.

4 VARIATIONAL BARYCENTRIC COORDINATES

We are now ready to introduce our formulation of generalized
barycentric coordinates. We begin by introducing the optimiza-
tion problem at the heart of our formulation in §4.1 and then offer a
computational representation of the function space of valid barycen-
tric coordinates in §4.2. Additionally, we show that not only are

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:4 • Dodik et al.

Fig. 2. A 2D illustration of our model. We connect triplets of polygon vertices into non-degenerate triangles. For each triangle that contains 𝒙 in its interior,

we compute the triangle barycentric coordinates of 𝒙 . We define the polygon barycentric coordinates as the convex combination of triangle barycentric

coordinates, with coefficients given by a differentiable parametric function N(𝒙) .

all of the coordinates produced by our method within the feasible
set (Proposition 4.2), but also our method allows us to represent all
possible valid barycentric coordinates for any cage (Proposition 4.1).

4.1 Model

We define variational barycentric coordinates as the minimizer of
an energy functional 𝐹 under the relevant constraints

min
𝛼𝑖∈ [1,𝐾]

𝐾∑︁
𝑖=1

∫
P
𝐹 [𝛼𝑖 (𝒙),∇𝛼𝑖 (𝒙),Δ𝛼𝑖 (𝒙)] d𝑉 (𝒙), (3)

s.t. 𝛼𝑖 (𝒙) ≥ 0 , ∀𝛼𝑖 , 𝒙, (non-negativity) (3.1)∑
𝑖𝛼𝑖 (𝒙) = 1 , ∀𝒙, (partition of unity) (3.2)

𝛼𝑖 (𝒗 𝑗) = 𝛿𝑖 𝑗 , ∀𝛼𝑖 , 𝒗 𝑗 (Lagrange property) (3.3)∑
𝑖𝛼𝑖 (𝒙)𝒗𝑖 = 𝒙 , ∀𝒙, (reproduction) (3.4)

where 𝛿𝑖 𝑗 is the Kronecker delta, and 𝑉 is the volume form of P.
Some choices for 𝐹 have historically included the Dirichlet energy
Joshi et al. [2007] and the weighted total variation Zhang et al. [2014].
Because our method is constrained to the set of valid barycentric
coordinates by construction, optimizing for different objectives is
simply a matter of using the correct energy functional. We will see
some other possible choices for 𝐹 in §5.

4.2 Decomposition of Barycentric Coordinates

Deep learning architectures provide expressive function approxima-
tors, but barycentric coordinates require enforcing the constraints in
(3)—which are not typically satisfied by generic neural network pa-
rameterizations. While constraints in Equations 3.1, 3.2, and 3.3 can
be satisfied by normalizing and carefully reweighing the network
output, building the reproduction property from Equation 3.4 into
a neural network architecture poses a nontrivial challenge. In this

section, we will offer a theoretical characterization of barycentric
coordinate functions that is amenable to neural network represen-
tations.

Recall from §3 that the barycentric coordinates of a simplex inR𝑑—
e.g. triangles in R2, or tetrahedra in R3—are uniquely determined
under mild conditions and can be computed in closed form. Due to
this fact, our method relies on simplices as its basic building blocks.
For the sake of simplicity, we will restrict the following discussion
to 2-dimensional polygonal cages.
Our method decomposes the cage into a large number of non-

degenerate overlapping virtual triangles that share their vertices
with the cage:

T ≔ {T | V(T) ⊆ V(P),Vol(T) ≠ 0}. (4)

Let T ∈ T be a virtual triangle with vertices {𝒗𝑙 , 𝒗𝑚, 𝒗𝑛} ⊆ V(P).
Then, the cage barycentric coordinates due to T can be written in
terms of the corresponding triangle barycentric coordinates:

𝛼𝑖 (𝒙 ;P,T) =
{
𝛼𝑖 (𝒙 ;T), if 𝒗𝑖 ∈ {𝒗𝑙 , 𝒗𝑚, 𝒗𝑛},
0, otherwise.

(5)

This formula states that for every 𝒙 inside of T , the triangle co-
ordinates of T are also valid cage coordinates as they inherit the
necessary constraints.

In practice, multiple triangles typically overlap any given 𝒙 . There-
fore, we define the set of valid triangles at 𝒙 to be all virtual triangles
in T that cover 𝒙 :

T𝒙 ≔ {T ∈ T | 𝒙 ∈ T }. (6)

To combine the coordinates due to the different virtual triangles,
we have to assign each triangle T𝑗 ∈ T𝒙 a spatially varying weight,
𝑤 𝑗 (𝒙). We can then define the full cage barycentric coordinates as

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:5

a convex combination of the different triangle weights:

𝛼𝛼𝛼 (𝒙 ;P) =
|T𝒙 |∑︁
𝑗=1

𝑤 𝑗 (𝒙) 𝛼𝛼𝛼 (𝒙 ;P,T𝑗) . (7)

As we will show in Proposition 4.2, so long as 𝑤 𝑗 (𝒙) ≥ 0 and∑
𝑗 𝑤 𝑗 (𝒙) = 1, this operation retains all of the necessary properties

such that 𝛼𝛼𝛼 (𝒙 ;P) always remain valid barycentric coordinates.
The triangle weights are degrees of freedom, and we are free

to choose any set of weights for each 𝒙 such that the weights are
valid coefficients of a convex combination. An equivalent way of
phrasing this is that the weights𝑤 𝑗 form a categorical probability
distribution over the elements of T𝒙 . Therefore, we can model the
weights using any representation that maps points on the interior
of the cage to categorical distributions over the set of valid triangles.
Luckily, this is a standard problem in machine learning, and we
can use a neural network as the triangle weights:𝑤 𝑗 ≔ N𝑗 , where
N : R𝑑 → Δ(T𝒙), and Δ(T𝒙) is the probability simplex over T𝒙 .

This construction leads to parameterization of variational barycen-
tric coordinates:

𝛼𝛼𝛼 (𝒙 ;P) =
|T𝒙 |∑︁
𝑗=1

N𝑗 (𝒙) 𝛼𝛼𝛼 (𝒙 ;P,T𝑗) . (VBC) (8)

Please refer to Figure 2 for an illustrative explanation and to §6.1
for more details on the computational model.

As we will see in the proof of Proposition 4.2, the formula above
automatically satisfies most of the properties of barycentric coordi-
nates, namely non-negativity, partition of unity, and reproduction.
The one missing property is the Lagrange property. To enforce this
property, we have to introduce a slight modification to our formula-
tion. While there are multiple ways of addressing this challenge, we
opted for one that is simple to implement, as it requires no modifica-
tions to the architecture, while reducing computational complexity
(see §6.3). In particular, we remove all triangles from T that con-
tain another cage vertex in their interior. In other words, we prune
triangles containing other vertices of P in their interiors:

T̂ ≔ {T ∈ T | ∀𝒗 ∈ V(P) : 𝒗 ∈ T =⇒ 𝒗 ∈ V(T)}. (9)

The rest of our formulation remains identical, and we simply operate
on T̂ instead of onT. Now, whenwe evaluate (8) at 𝒗 ∈ V(P), we are
taking a convex combination of barycentric coordinates exclusively
from triangles with 𝒗 as a vertex, all of which fulfill the Lagrange
property.
The proposed modification limits the types of coordinate func-

tions that our model can represent, in contrast with Proposition 4.1
below. It would have been possible to solve this problem differently,
e.g. by reweighting the network outputs to take into account the
distance to each cage vertex or by adding a penalty term to the
optimization. However, these approaches introduce unnecessary
complexity compared to pruning. Moreover, from a practical stand-
point, there are few scenarios where having large triangles that
cover other vertices is desirable behavior; see Figure 3. Lastly, as we
will see in §6, pruning helps in reducing the computational demands
of our algorithm.

Fig. 3. To satisfy the Lagrange property, we prune away triangles which con-

tain polygon vertices in their interior. These triangles introduce long-range

dependencies across polygon boundaries, which is considered undesirable

[Zhang et al. 2014]. The illustrated triangle results in the Lagrange prop-

erty not being enforced at 𝒗11, while introducing a long-range dependency

between 𝒙 and 𝒗14. Therefore, pruning these kinds of triangles not only

enforces the Lagrange property, but also encourages locality.

4.3 Analysis

Next, we discuss the theoretical properties of our formulation. In
particular, we will show that it produces correct barycentric coordi-
nates by construction, and less obviously, that it can represent all
barycentric coordinate functions.

Proposition 4.1 (Universality). Given a cageP, any barycentric
coordinate function 𝛼𝛼𝛼 can be decomposed into a convex combination
of simplex barycentric coordinates of all possible simplices that can be
formed by combining the cage vertices.

Proof. Take a point 𝒙 ∈ P. By definition, 𝛼𝛼𝛼 (𝒙) lies in a convex
polytope defined by the non-negativity constraint (3.1) (𝐾 linear
inequality constraints), the partition of unity constraint (3.2) (1
linear constraint), and the reproduction constraint (3.4) (𝑑 linear
constraints).
The corners of such a polytope cut out by linear inequality con-

straints are given by intersecting 𝐾 constraint planes at a time. In
this case, there are 𝑑 reproduction constraints, and there is one
partition of unity constraint; this means that each corner intersects
at least 𝐾 − (𝑑 + 1) non-negativity constraint planes. This argument
shows that 𝛼𝛼𝛼 (𝒙) contains at most 𝐾 − (𝐾 − (𝑑 + 1)) = 𝑑 + 1 nonzero
values.

By the argument above, the corners of the constraint polytope
are exactly simplex barycentric coordinates drawn from subsets of
vertices of P. Since our constraints are linear, the constraint poly-
tope is contained within the convex hull of its corners, completing
the proof. □

A less formal way of phrasing the proposition is that our construc-
tion is a universal barycentric coordinate approximator. Intuitively,

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:6 • Dodik et al.

Fig. 4. Variational barycentric coordinates produce smooth-looking color interpolations from the colored cage vertices onto the Bust of Sappho mesh. The

coordinates in this Figure were optimized using the weighted TV objective from Section 5.2.

we have shown that the constraint polytope of barycentric coordi-
nates is exactly the space in which our network operates, Δ(T𝒙).
This result shows that our construction captures the fundamental
underlying structure of the function space of barycentric coordi-
nates. For completeness, we also verify a converse result:

Proposition 4.2 (Validity). As long as the network N(𝒙)’s out-
puts are non-negative and sum to one, variational barycentric coordi-
nates satisfy the barycentric coordinate constraints by construction.

Proof. Non-negativity and partition of unity are fairly intuitive
to verify. Since each set of simplex coordinates 𝛼𝛼𝛼 (𝒙;P,T) is non-
negative and sums up to one, a convex combination of themwill have
the same properties. As discussed near Equation 9, the Lagrange
property follows from an identical argument.
Next, we need to address the reproduction property. We know

from Equation 2 that for any individual simplex T𝑗 ∈ T𝒙 ,
𝑑+1∑︁
𝑖=1

𝛼𝑖 (𝒙 ; P,T𝑗) 𝒗𝑖 = 𝒙 . (10)

Taking a convex combination over the barycentric coordinates of
all T𝑗 ∈ T𝒙 retains the reproduction property,

|T𝒙 |∑︁
𝑗=1

N𝑗 (𝒙)
𝑑+1∑︁
𝑖=1

𝛼𝑖 (𝒙 ;P,T𝑗) 𝒗𝑖 =
|T𝒙 |∑︁
𝑗=1

N𝑗 (𝒙) 𝒙 = 𝒙, (11)

which completes the proof. □

5 OPTIMIZATION OBJECTIVES

The key benefit of our method compared to previous work is its
flexibility with respect to the optimization objective. In this section,
we will first discuss how to optimize commonly used first-order
smoothness energies: total variation, weighted total variation, and
the Dirichlet energy. Additionally, we offer two examples of alter-
native optimization energies to demonstrate the degree of control
over the final look of the animation offered by formulation.

5.1 Total Variation

Minimizing total variation (TV) ensures both piecewise-smoothness
as well as locality [Joshi et al. 2007; Zhang et al. 2014]. However,
our formulation is inherently non-smooth due to the discontinu-
ities along the boundaries of virtual triangles. As a consequence,
minimizing TV requires additional care. Specifically, the familiar
definition of total variation [Zhang et al. 2014],

TV(𝛼𝛼𝛼) =
𝐾∑︁
𝑖=1

TV(𝛼𝑖) =
𝐾∑︁
𝑖=1

∫
P
∥∇𝛼𝑖 ∥2 d𝒙, (12)

is inadequate for our model as it fails to account for the difference
in function values across the discontinuities.

Instead, we begin with the more general dual formulation of total
variation [Chambolle et al. 2010]:

TV(𝛼𝑖) = sup
𝜙∈𝐶∞

{
−
∫
P
𝛼𝑖 div𝜙 d𝒙

��� ∀𝒙 ∈ P : ∥𝜙 ∥ ≤ 1
}
. (13)

Applying integration by parts to this formulation on a domain with
no discontinuities and smooth functions 𝛼𝑖 recovers Equation 12.
Following Zhang et al. [2020], we can apply a similar strategy to our
problem, taking special care to account for the boundary conditions
along discontinuities.

The discontinuities in our formulation partition the domain into
𝑁 disjoint sets, P = P1 ∪ . . . ∪ P𝑁 , with a total of 𝑀 possible dis-
continuities, 𝜕P1 , . . . , 𝜕P𝑀 , between them. As already alluded to,
applying integration by parts to Equation 13 incurs a boundary term
for each discontinuity, 𝜕P𝑗 . Denoting with 𝛼+

𝑖
and 𝛼−

𝑖
the values of

𝛼𝑖 on either side of the discontinuity, the final formulation of total
variation for our problem is

TV(𝛼𝑖) =
𝑁∑︁
𝑗=1

∫
P𝑗

∥∇𝛼𝑖 ∥2 d𝒙 +
𝑀∑︁
𝑗=1

∮
𝜕P𝑗

|𝛼+𝑖 − 𝛼−𝑖 | d𝒙 . (14)

This version of TV makes it apparent that naively applying auto-
matic differentiation or a finite-difference estimator to the model in
Equation 8 would not work, as neither approach correctly captures
the boundary integral. At a first glance, it might seem necessary

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:7

to manually keep track of the discontinuities as well as 𝛼+
𝑖
and 𝛼−

𝑖
during the optimization. However, in §6.2 we will introduce a simple
mollification strategy motivated by our total variation formulation
in Equation 14 that will allow us to approximate of this energy with
a standard finite-difference estimator.

5.2 Weighted Total Variation

A key component of local barycentric coordinates [Zhang et al. 2014]
is the inclusion of a distance-based weighting of the objective en-
ergy,

TV(𝛼𝛼𝛼) =
𝐾∑︁
𝑖=1

∫
P
Ψ(𝑑 (𝒙, 𝒗𝑖)) ∥∇𝛼𝑖 ∥2 d𝒙, (15)

where 𝑑 (𝒙, 𝒗𝑖) is the geodesic distance between 𝒙 and 𝒗𝑖 , and 𝜓
is a user-specified function. As a consequence of the acceleration
strategy explained in §6.3, the geodesic distance to a cage vertex
𝒗𝑖 is equivalent to the Euclidean distance in all regions where its
coordinates 𝛼𝑖 are non-zero. This allows us to choose 𝑑 (𝒙, 𝒗𝑖) to be
the Euclidean distance between 𝒙 and 𝒗𝑖 , doing away with geodesic
distance solvers and making our method completely grid-free.
In our experiments, we use Ψ(𝑡) = 𝑐 + (1 − 𝑐)𝑡2, with 𝑐 = 10−1,

as a way of blending between standard TV and square-weighted
TV. Using only the square-weighted TV would artificially set the
smoothness energy near the vertex to close-to-zero. In practice, this
means that the optimization procedure would not minimize the
discontinuities between virtual triangle edges close to the vertex.

5.3 Dirichlet Energy

The Dirichlet energy was first proposed as an objective for barycen-
tric coordinates by Joshi et al. [2007]. For a smooth function 𝑢, it
is the integral of its squared gradient over the domain,

∫
∥∇𝑢∥2𝑑𝑥 .

Since our functions are not smooth and can be discontinuous over
the boundaries 𝜕P𝑗 , we account for this by introducing additional
finite differences over element boundaries to our formulation as a
way of mimicking the gradient at these discontinuities. We define
the Dirichlet energy for our formulation as

Dir(𝛼𝑖) B
𝑁∑︁
𝑗=1

∫
P𝑗

∥∇𝛼𝑖 ∥22 d𝒙 +
𝑀∑︁
𝑗=1

∮
𝜕P𝑗

|𝛼+𝑖 − 𝛼−𝑖 |2 d𝒙 . (16)

While this is a heuristic approximation of the Dirichlet energy, we
find that it yields useful results (Figure 11). Barycentric coordinates
obtained with our formulation of Dir(𝛼𝑖) exhibit similar fall-off be-
havior as Dirichlet coordinates computed by discretizing the entire
domain (Figure 16).

5.4 As-Rigid-As-Possible Energy

Energies such as total variation or the Dirichlet energy do not ac-
count for the final look of the deformations that result from using a
set of barycentric coordinates. For example, coordinates produced by
minimizing TV often produce elastic-looking deformations, which
can be undesirable (see Figures 1 and 5 for examples). To address
this, our approach allows us to fine-tune already optimized weights
by using deformation-aware objectives.

Fig. 5. Variational barycentric coordinates produce smooth looking 2D
deformations, as shown on the Elephant mesh. The shown result was

obtained by using variational barycentric coordinates optimized using the

weighted TV objective from §5.2.

In this task, we are given a 3D model in its rest pose, S, a cage P
surrounding that model, and a deformation of the cage, P′. The opti-
mization variables are the coordinate functions,𝛼𝛼𝛼 in Equation 1, and
the optimization generates weights so that the map 𝜑𝛼𝛼𝛼 minimizes
the as-rigid-as-possible (ARAP) energy restricted to the surface of
the deformed interior mesh,S′ [Chao et al. 2010; Igarashi et al. 2005;
Sorkine and Alexa 2007]. The continuous ARAP energy is defined
as,

ARAP(𝜑𝛼𝛼𝛼 ; P′) =
∫
S

𝑑𝜑𝛼𝛼𝛼 (𝒙 ; P′) − projSO(3) 𝑑𝜑𝛼𝛼𝛼 (𝒙 ; P′)
2
𝐹
d𝒙,
(17)

where 𝑑𝜑𝛼𝛼𝛼 (𝒙; P′) is the push-forward of 𝜑𝛼𝛼𝛼 at 𝒙 , and projSO(3)
the projection onto SO(3). Following Sorkine and Alexa [2007], we
have only focused on the surface ARAP energy, i.e. the energy of the
deformation between S and S′. We leave volumetric deformation
energies [Abulnaga et al. 2023] between P and P′ for future work.

Since S is a mesh, we compute the discrete ARAP energy at each
vertex [Sorkine and Alexa 2007] and use it to fine tune a set of
variational barycentric coordinates. Specifically, the discrete ARAP
energy (assuming uniform Laplacian weights) at an interior vertex
𝒙𝑖 of S is defined as

ARAP𝒙𝑖 (𝜑𝛼𝛼𝛼) ≈
∑︁
𝑗∈𝑛 (𝑖)

(𝜑𝛼𝛼𝛼 (𝒙𝑖) − 𝜑𝛼𝛼𝛼 (𝒙 𝑗)) − 𝑅𝑖 (𝒙𝑖 − 𝒙 𝑗)
2
𝐹
, (18)

where 𝑛(𝑖) is the set of its neighbors, and 𝑅𝑖 the best approximating
rotation to 𝑑𝜑 (𝒙𝑖).
During training, we uniformly randomly sample vertices, and,

for each sampled vertex, we randomly sample an adjacent edge.
A single-sample Monte Carlo estimator of the energy of a given
sampled vertex is given by:

�ARAP𝒙𝑖 (𝜑𝛼𝛼𝛼) ≈ 1
|𝑛(𝑖) |

(𝜑𝛼𝛼𝛼 (𝒙𝑖) − 𝜑𝛼𝛼𝛼 (𝒙 𝑗)) − 𝑅𝑖 (𝒙𝑖 − 𝒙 𝑗)
2
𝐹
. (19)

Our final loss is constructed by averaging this single-sample esti-
mator for all sampled vertices.
As a slight modification to the approach by Sorkine and Alexa

[2007], instead of using SVD to find 𝑅𝑖 for each vertex, we store each
vertex’s rotation as a variable and jointly optimize both 𝑅𝑖 and 𝜑𝛼𝛼𝛼
using stochastic gradient descent. In our implementation, we store
rotations in the SO(3) matrix logarithm format. Before running
the main optimization loop, we initialize the rotations by manually
finding the best-approximating rotations to the initial 𝑑𝜑𝛼𝛼𝛼 .

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:8 • Dodik et al.

5.5 Inverse Deformation Energy

Variational barycentric coordinates can be used to solve inverse
deformation problems: given a 3Dmodel in its rest pose,S, a cage P
surrounding that model, and a deformation of the model,S′, we look
for a deformation of the cage, P′, such that the deformation induced
by 𝜑𝛼𝛼𝛼 (S; P′) best approximates S′. Common use-cases are finding
the deformation of a human body model to best fit a registered 3D
scan or finding a cage-based deformation that best approximates
the result of a physics simulation as a way of amortizing compute.
Our model allows us to tackle inverse deformation problems by
jointly optimizing our coordinates and the deformed cage vertex
positions. We demonstrate the usefulness of VBC for the inverse
physics simulation problem in Figure 12 .

Given a set of uniformly randomly drawn samples on the surface
of the undeformed mesh, (𝒙1, . . . , 𝒙𝑁) ∈ S, and the corresponding
points on the deformed mesh (𝒙′1, . . . , 𝒙′𝑁) ∈ S′, we can compute
the mean absolute distance to measure the error between the de-
formation produced by the optimized map and the target mesh. In
addition, we add a regularization term that encourages the norm of
the deformed mesh Laplacian to be as close as possible to that of
the ground-truth mesh. For each sample 𝒙𝑖 , we compute the norm
of the Laplacian at the neighboring triangle vertices and interpolate
them onto 𝒙𝑖 . Our inverse deformation energy is given by

I(S,S′) = 𝐴(S)
𝑁

∑𝑁
𝑖=1

𝜑𝛼𝛼𝛼 (𝒙𝑖) − 𝒙′
𝑖

2

+𝜆
(
∥Δ𝜑𝛼𝛼𝛼 (𝒙𝑖)∥2 −

Δ𝒙′
𝑖

2

)2
,

(20)

where Δ𝒙 denotes the interpolated vertex Laplacian at 𝒙 , 𝐴(S) de-
notes the area ofS and 𝜆 is a user-specified regularization parameter
that we keep fixed at 10−4.
We optimize Equation 20 using a two step procedure. Starting

from a weighted TV barycentric coordinate network, we first find
the closest-approximating global rotation and scale for the deformed
cage using stochastic gradient descent on the energy in Equation 20
During, this stage, we keep the deformed cage’s local-frame vertex
positions and the network weights fixed. Once a suitable global
rotation and translation of the deformed cage is found, we jointly
optimize the deformed cage’s local-frame vertices and fine-tune
the barycentric coordinate network. The exact details of the opti-
mization setup for the experiment in Figure 12 are presented in
Section 7.4.

6 COMPUTATIONAL MODEL

Having covered the mathematical underpinnings of our model, in
this section we detail the practical aspects of its implementation.

6.1 Neural Network Model

We model the convex combinations of triangle barycentric coor-
dinates using a neural field that maps points on the interior, 𝒙 to
categorical probability distributions over valid virtual triangles in
2D, i.e. tetrahedra in 3D. To this end, we construct the last network
layer to as many outputs as the total number of triangles in T, re-
gardless of whether they contain 𝒙 or not. The network outputs
are mapped to a positive value using the softplus activation func-
tion. We zero out the probabilities for all triangles which do not

contain the queried interior point before finally normalizing the
distribution.

At first glance, this approach results in a potentially large network
output layer, as the total number of virtual simplices scales with
O(𝐾3) in 2D and O(𝐾4) in 3D. As a remedy, we will introduce a
simplex pruning strategy in §6.3, which reduces the computational
complexity of our method to O(𝐾) for most common scenarios and
makes our method tractable for more complex cages.

We use a feed-forward network with 5 hidden layers of width 256
and a LeakyReLU [Maas 2013] activation function. Before feeding
the interior coordinates into the network, we first encode them
with the hash-grid encoding [Müller et al. 2022], with 16 levels, 4 fea-
tures per level, and smoothstep interpolation. We train the network
using the Adam optimizer Kingma and Ba [2014]. We include the
remaining experimental parameters in Table 1. We have not made a
significant effort to tune the architecture or the hyperparameters
of our network, nor have we used any acceleration data structures
to accelerate the process of finding which triangles contain a given
interior point.

6.2 Smoothing Discontinuities

Explicitly sampling the discontinuities and computing 𝛼+
𝑖
and 𝛼−

𝑖
in Equation 14 would add significant additional complexity to our
approach. Instead, we introduce a comparatively simple mollifica-
tion approach, which allows us to estimate both the interior and
the boundary terms in Equations 14 and 16 with an off-the-shelf
finite-difference estimator over P.
Assume 𝑓 is zero everywhere on R2 except within a triangle.

One way of thinking about 𝑓 is as a smooth function multiplied by
the 0-1 indicator function of the triangle. In essence, our approach
replaces the indicator function with an appropriate mollifier, such
that the resulting smooth surrogate, 𝑓 ∗

𝑟,𝛿
, approaches 𝑓 as 𝛿 → ∞.

By carefully choosing the smoothing function, we can ensure that∫
∥∇𝑓 ∗

𝑟,𝛿
∥2 approaches the TV formulation in Equation 14. Once our

model is optimized, we disable the mollification to ensure that the
barycentric coordinate constraints are satisfied during inference.
To accomplish this, we define a smoothing radius 𝑟 around each

discontinuity, inside of which we rapidly decay the indicator func-
tion to zero, and then smooth it using a scaled logistic function.
Denoting by 𝑑 (𝒙) the signed distance of a point 𝒙 to the boundary
of a triangle, we define the a ramp function which increases from
linearly from −1 to 1 within the smoothing radius,

𝑅𝑟 (𝒙) =

𝑑 (𝒙)
𝑟 if 𝑑 (𝒙) ≤ |𝑟 |,

1 if 𝑑 (𝒙) > 𝑟,
−1 if 𝑑 (𝒙) < −𝑟 .

(21)

Finally, we smooth the ramp function using a scaled logistic func-
tion, 𝜎𝛿 (𝑥) = 1

1+exp{−𝛿𝑥 } , where 𝛿 is a user-chosen sharpness pa-
rameter,

𝑓 ∗
𝑟,𝛿

(𝒙) = 𝜎𝛿 (𝑅𝑟 (𝒙)) − 𝜎𝛿 (−1)
𝜎𝛿 (1) − 𝜎𝛿 (−1)

𝑓 (𝒙) . (22)

We normalize and recenter 𝜎𝛿 to ensure continuity at 𝑑 (𝒙) = ±𝑟 .
This function has a 𝐶1 discontinuity, which does not appear to
affect our optimization procedure in practice; we leave to future

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:9

work design of a spline-based smoothing function with higher order
continuity at 𝑑 (𝑥) = ±𝑟 . Our approach is illustrated in Figure 6.

Choice of smoothing function. In our scenario, there are multiple
indicator functions meeting at the shared edges of virtual triangles.
The smoothing function we choose has to have the correct limiting
behavior in this situation. The sum of two or more logistic functions
centered around the same point is again a logistic function, whose
limit converges to a step function. Moreover, the derivative of a
logistic function becomes a Dirac delta as 𝛿 → ∞, whose integral
equals exactly the difference on either side of the function, as needed
to capture the second term in Equation 14.

Implementation details. Naturally, we only want to perform this
type of smoothing on the interior virtual edges, but not at the bound-
ary of P. Therefore, it is either necessary to explicitly keep track of
which edges are part of the boundary, or to exclude samples closer
than 𝑟 to the boundary from the optimization. We opted for the
second approach as it appears not to yield noticeable artifacts as
long as 𝑟 is small enough and the cage faces distant enough from
the interior mesh.

There is a natural trade-off when picking the values of 𝑟 and 𝛿 . If
𝑟 is too small and 𝛿 too large, we might have trouble sampling the
discontinuities during optimization. If 𝛿 is too small, we blur the
gradient function too much and possibly optimize for the wrong re-
sult. The concrete parameters used in our experiments are included
in Table 1.

Finite-difference estimator. We use a standard central difference
estimator and keep the spacing constant at ℎ = 2.5 · 10−2. There
appears to be a similar trade-off when it comes to the size of ℎ as
with the value of 𝑟 : if we make ℎ too small, we amplify the noise
due to the network and the hash-grid encoding, but if we make it
too large, we increase the bias in the estimated gradient.

6.3 Accelerating The Model

So far, the practical utility of our theoretical formulation has been
limited by the fact that the number possible virtual triangles grows
with O(𝐾3). This presents a problem for two reasons—not only
does it significantly increase the necessary compute, it also means
that the representational power of the neural field quickly becomes
insufficient as 𝐾 becomes larger. We alleviate both issues by using
a simple strategy for pruning triangles, which allows us to limit the
number of triangles to a constant multiple of the number of vertices.
Not only does such a strategy make our method tractable, it is also
locality-enforcing, meaning that it builds a notion locality into our
model as a hard constraint.
In §4.2, we presented a simple modification to our formulation

that ensures that the necessary constraints are satisfied by elim-
inating all virtual triangles which contain a cage vertex in their
interior. For reasons discussed in Figure 3, we have found this to be
a useful heuristic and therefore expand on the idea by completely
eliminating all virtual triangles that cross the boundary of the shape.
We do this by densely sampling the ambient space around our shape
and discarding all virtual triangles that contain one of the samples.
The actual pruning heuristic is designed with locality of coordi-

nates in mind. For each vertex, we first find all virtual triangles that

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

�1(�)
�2(�)
�P�

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

�̂1(�)
�̂2(�)
�P�

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

�̂1(�) + �̂2(�)
�P�

�

0.0 0.5 1.0 1.5 2.0
0

5

10

15

∇� (�̂1(�) + �̂2(�))
�P�

�

Fig. 6. An illustration of our method for computing total variation with a

finite difference estimator. The figure in the top left shows two functions,

𝑓1 and 𝑓2, which are non-zero over two different line segments (i.e. 1D
simplices). The sum of these two functions has a 1D discontinuity at the

vertex that is shared between the two line segments, marked with 𝜕P𝑖 . The
top right figure shows the effect of our smoothing term with radius 𝑟 on

each of the two functions. The figure in the bottom left demonstrates that

the sum of the individually smoothed functions is equivalent to smoothing

the summed function. Lastly, the figure in the bottom right shows the finite

differences gradient estimator computed on the smoothed function. We

can see that as we increase 𝑟 , the gradient tends to a Dirac delta and the

discontinuities are correctly accounted for.

have that vertex as a corner. To enforce locality, we discard triangles
whose extent is not limited to the local neighborhood of the ver-
tex. Specifically, we sort the triangles by the length of their longest
edge, and keep the𝑀𝑝 shortest ones, where𝑀𝑝 is a user-specified
parameter. We will refer to this as the min-longest-edge heuristic.
Note that this pruning strategy does not replace the one in §9 and
Figure 3. As an example, in cages with three co-linear boundary
vertices, we must ensure that no virtual triangle contains the middle
of the three boundary vertices on one of its edges.

In certain edge cases, this heuristic can result in parts of the inte-
rior not being covered by any virtual triangles. To ensure coverage,
we sample the cage interior—either the interior volume, or the sur-
face of an interior mesh—and check if any of the samples have no
virtual triangles containing it. If this happens, we proceed to find all
virtual triangles that contain the interior point and have the closest
cage vertex as a corner, and then use the min-longest-edge heuristic
to choose𝑀𝑐 triangles.
We present the steps of our pruning approach in more detail in

Algorithm 1. The parameter values used in our experiments are
included in Table 1. We also include relevant statistics in Table 2 to
offer a more concrete picture of the computational savings.

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:10 • Dodik et al.

Algorithm 1: Virtual Simplex Pruning
Input: Cage P, set of all virtual triangles T, no. pruned triangles per

cage vertex𝑀𝑝 , no. coverage triangles per interior point𝑀𝑐 .
Result: Pruned set of virtual triangles T̂prune.

Remove degenerate triangles and triangles not inside P:

𝑋out B sample_outside(P, 𝑁out)

T̂ B {T ∈ T | not_degenerate(T) and (∀𝒙 ∈ 𝑋out : 𝒙 ∉ T) }

Prune using the min longest edge heuristic:

T̂pruned B ∅
for 𝒗𝑖 in V(P) :

Find triangles with 𝒗𝑖 as a vertex:

T̂𝑖 B {T ∈ T̂ | 𝒗𝑖 ∈ V(T) }
Find 𝑀𝑝 triangles with shortest longest edge:

T̂pruned B T̂pruned∪ subsample(T̂𝑖 ,𝑀𝑝 , "min-longest-edge")

Ensure that the interior is covered with triangles:

𝑋in B sample_inside(P, 𝑁in)

for 𝒙 in 𝑋in:

Check if 𝒙 is already covered by a triangle:

if {T ∈ T̂pruned | 𝒙 ∈ T} ≠ ∅:
continue

Find triangles that connect to the closest vertex:

T̂𝑖 B {T ∈ T̂ | closest_vertex(𝒙) ∈ V(T) }
T̂pruned B T̂pruned∪ subsample(T̂𝑖 ,𝑀𝑐 , "min-longest-edge")

Discussion. The coverage step inAlgorithm 1 potentially increases
the computational complexity beyond a constant factor of the num-
ber of cage vertices. However, if the interior mesh is known a priori—
which is often the case—we only need to ensure that the vertices of
the interior mesh are covered virtual triangles. Doing this reduces
the number of virtual triangles down to a constant factor of the sum
of cage and interior mesh vertices. We consider this scenario as an
edge case as it only occurred in a limited region of one cage mesh
from our test data, namely the Armadillo mesh.

7 RESULTS

In this section, we demonstrate the effectiveness and robustness
of variational barycentric coordinates. First, in §7.1 we present a
series of experiments and quantitative results which illustrate the
practical behavior of our implementation. Having validated the
method, in §7.2 we show qualitative results of our method and, in
§7.3, compare it to previous work. Lastly, §7.4 demonstrates the key
benefit of our formulation, its ability to optimize for deformation-
aware barycentric coordinates.

We built our implementation using PyTorch [Paszke et al. 2019],
as well as the Tiny CUDA NN [Müller 2021] library. All experiments
were performed on a desktop computer with an Intel Xeon E5-2630
v3 CPU, 32 GB of RAM memory and a Nvidia TITAN Xp GP102
with 12 GB of VRAM. Note that, despite using the Tiny CUDA NN
library, we were not able to take full advantage of it due to the lack
of necessary hardware components in our GPU.

Table 1. Experimental model parameters. We use two sets of parameters,

one for 2D experiments, and one for 3D.

Parameter Value (2D) Value (3D)

Smoothing sharpness (𝛿) 3000 1000
Smoothing radius (𝑟) 5 · 10−3 8 · 10−3

Max. simplices per cage vertex (𝑀𝑝) 28 80
Max. simplices per interior point (𝑀𝑐) 5 5

Training steps 2000 3000
Learning rate 10−3 5 · 10−4

Batch size 3000 2000

Fig. 7. Visualizing the 2D variational barycentric coordinates as well as the

associated TV energy before and after optimization on the Gecko mesh.

7.1 Validation

In this section, we discuss the different practical outcomes of our
implementation. We scale each cage mesh to the unit square, (resp.
unit cube) while maintaining the aspect ratio of its bounding box.
This allows us to have only two sets of parameters across all of our
test meshes: one for 2D and one for 3D.

To determine suitable parameters for the discontinuity smoothing
in §6.2, as well as the number of virtual simplices𝑀𝑝 , we performed
two ablation studies. An excerpt of the results is shown in Figure 8,
with the entire ablation study available in the supplemental mate-
rial. In summary, we want to make 𝛿 as large as possible to best
approximate Equation 14, while still keeping it small enough as to
not cause numerical issues. As for the number of virtual simplices,
we require a large enough value of𝑀𝑝 for sufficient representation

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:11

Star Gecko Woody Elephant Blue Monster Horse Bust of Sappho Hand Armadillo

Cage vertices 12 34 26 64 100 51 40 92 110
Possible simplices 220 5984 2600 41664 16170 249900 91390 2794155 5773185
Interior simplices 68 388 738 1923 5255 3247 83958 35462 56438

Used simplices 68 388 403 803 1469 1072 1308 3432 4153

Training time (min) 1.03 1.36 1.37 1.99 3.09 11.88 15.45 35.32 43.05
Inference time (ms) 3.64 4.49 4.66 7.17 11.41 42.70 56.78 136.26 169.66

Table 2. Experimental statistics. As a way of quantitatively characterizing our pruning heuristic, we include in the table for a subset of cage meshes the

number of vertices, the total number of possible virtual simplices, the number of non-degenerate simplices fully contained in the interior of the cage, as well as

the final number of simplices used in the model. We also include the training times, as well as the inference times for a batch size of 2000.

power. Interestingly, the quality seems to plateau after a certain
number of virtual triangles, practically justifying the min-longest-
edge-heuristic. Table 1 contains the concrete algorithm parameters
we used for all experiments.

Each 3D training sample has a lower probability of being in the
smoothing radius of each discontinuity, making the training signal in
those areas sparser and more noisy. Therefore, we found it useful to
use awider smoothing function in 3D compared to 2D. In general, we
also require more virtual simplices per cage vertex in 3D compared
to 2D to produce smooth coordinate function. This is to be expected,
as there are far more possible virtual tetrahedra than there are
triangles. The parameter which governs the number of simplices
per interior point in the scenario where our initial pruning heuristic
fails to cover the entire domain,𝑀𝑐 , remained unused in all of our
2D experiments. We nonetheless suggest leaving it as a non-zero
value to ensure against corner cases.

Table 2 presents the quantitative behavior of our algorithm, in-
cluding statistics related to our pruning heuristic from Section 6.3.
While the number of all possible simplices increaseswith the number
of cage vertices and the dimension of ambient space, our heuristics
keep the final number of simplices in our model to a more reasonable
number.
While the training and inference time increase somewhat with

the number of cage vertices, the main factor influencing timing
is dimension (2D vs. 3D). We attribute this to several factors: the
inference time is slower due to a larger final network layer, a naive
3D central difference estimator requires 2 additional network evalu-
ations compared to a 2D one, and we require a smaller batch size
with more training steps and a smaller learning rate to accomodate
the increased GPU memory requirements due to the two additional
network evaluations each training step.

Figure 7 visually compares the variational barycentric coordinates
and associated TV energy of a randomly initialized network to those
of a TV-optimized network. The total variation of the randomly ini-
tialized network is focused primarily on the discontinuities between
virtual triangles. These are largely optimized-away, demonstrating
the effectiveness of the smoothing approach from §6.2.
In this experiment, the full total variation, 𝑇𝑉 (𝛼𝛼𝛼) = ∑

𝑖 𝑇𝑉 (𝛼𝑖),
of the optimized network is non-zero on the entire domain. This

Fig. 8. A subset of the results on the Panda mesh from our ablation study.

We find larger values of the sharpness parameter 𝛿 to perform better as they

help better approximate Equation 14. The visual smoothness of the results

deteriorates again after a certain point, presumably due to numerical issues

caused by large gradient values associated with larger values of 𝛿 . Making

the smoothing radius 𝑟 too small compared to the sharpness parameter 𝛿

results in visual artifacts. We hypothesize that this is due to discontinuities

caused by the ramp function cutoff in Equation 21 which otherwise become

numerically negligable when 𝛿 is large enough compared to 𝑟 . For the

ablation study of the min-longest-edge heuristic, we set𝑀𝑐 = 0, disabling
the part of the algorithm that ensures interior coverage, and varied the

maximum number of virtual triangles per cage vertex, 𝑀𝑝 . As expected,

small values of 𝑀𝑝 are not enough to faithfully represent the coordinate

functions in the entire shape, and after a certain point, adding additional

virtual triangles does not affect the results visually.

demonstrates a tension between barycentric coordinate constraints

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:12 • Dodik et al.

Fig. 9. Figure (a) shows the visualization of weighted TV coordinates on

2D and 3D meshes. Figure (b) shows excerpts from smooth animations

generated by inbetweening cage deformations.

and smoothness energies: Because all barycentric coordinate func-
tions are convex combinations of simplex barycentric coordinates,
their gradients are also complex combinations of the corresponding
simplex gradients towards the cage vertex.

7.2 Qualitative Results

In this section, we provide several visualizations of variational
barycentric coordinates in both 2D and 3D and demonstrate their
usefulness for cage-based deformation.

Fig. 10. We demonstrate the effect of using TV-optimized variaitonal

barycentric coordinates to perform various deformation of the Horse mesh.

The undeformed mesh is shown on the top left.

Figure 4 demonstrates how our coordinates can be used to smoothly
interpolate values such as color from the vertices of a 3D cage into
its interior. Similar to the 2D example in Figure 7, the TV varia-
tional barycentric coordinates produce smooth-looking function
interpolations.

Figure 11 depicts an experiment where we compare the barycen-
tric coordinate functions obtained by minimizing the Dirichlet en-
ergy as opposed to total variation. The total variation coordinates
tend to be significantly more localized compared to the Dirichlet
ones, leading to narrower regions of influence. The flexibility of our
formulation with respect to the optimization objective allows the
user to choose the set of coordinate functions which best suits their
particular use-case.

Fig. 11. Comparing different sets of barycentric coordinate functions in 3D.

Left to right, we show coordinates from a randomly initialized network prior

to training, our Dirichlet coordinates, as well as our weighted TV coordinates.

The Dirichlet-optimized coordinate functions tend to be blurrier and have a

wider region of influence compared to the TV-optimized ones.

Lastly, Figures 5, 9 and 10 demonstrate the usefulness of our
coordinates for the common use-case of 2D and 3D cage-based
deformation. As evidenced by our experiments, the deformations
appear smooth, and the deformations due to individual cage ver-
tices do not exhibit unnecessarily global influence, in part due to
the pruning heuristic from Section 6.3. We refer the reader to the
supplemental material for the animation videos.

7.3 Comparison

Figures 16 and 13 compare our Dirichlet, TV, and weighted TV
coordinates with other available methods. All produce broadly simi-
lar weights that fulfill that barycentric conditions, but differences
exist. Our weighted TV results are qualitatively similar to Local
Barycentric Coordinates (LBC), which also uses a weighted TV en-
ergy. Weighted TV coordinates have more local support (no small
values far away from the cage vertex), and a harsher fall-off of basis
functions (the area of large values near the vage vertex is larger).
This effect is slightly more pronounced for our weighted TV results
compared to LBC’s. Moreover, unlike LBC, our TV and weighted TV
methods do not require discretization of the domain. MVC gener-
ates particularly nonlocal results: while the coordinates’ red values
in our weighted TV function can be seen to almost partition the
shape, MVC coordinates are red only extremely close to the cage

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:13

(a) Simulation result (b) Cage optimization
 (MAE: 0.0088)

(c) Joint optimization
 (MAE: 0.0029)

Fig. 12. Our method can be used to approximate non-linear deformations such as the soft-body simulation result shown in Figure (a). Simply using the

standard TV coordinate and optimizing the cage leads to an unnatural result, visible artifacts and a large per-vertex approximation error, as visible in Figure (b).

However, if we also allow the weights of our network to change during the optimization, we can achieve a much more natural looking result, decreasing the

error by two thirds—see Figure (c).

Fig. 13. Select frames taken from smooth animations produced by our

method compared to those produced by previous work (full videos available

in the supplemental material).

vertex, and all blend into each other in the interior of the shape.
The Dirichlet and MVC coordinate functions have rounder isolines
than the TV-based methods. This is a consequence of the order
of the exponent in the energy’s norm. Our Dirichlet coordinates
exhibit maximum overall smoothness and smaller areas with large
function values, while having larger supports, without the need to
discretize the shape’s interior. Our non-weighted TV coordinates’
behavior is in between the Dirichlet and weighted TV coordinate
functions. The resulting coordinates are not as local as the weighted

TV coordinates, but they are smoother, and they are more local than
the Dirichlet coordinates, but not as smooth.

7.4 Deformation-Aware Coordinates

A distinguishing feature of our formulation is its ability to opti-
mize different objective functions within the space of barycentric
coordinate functions. Already, in Section 7.2, we demonstrated sev-
eral results with two such functions: the total variation from Equa-
tions 14 and 15, and the Dirichlet energy from Equation 16. Beyond
these two generic energies, in this section we test the as-rigid-as-
possible energy introduced in Section 5.4, as well as the inverse
deformation energy from Section 5.5.

As-rigid-as-possible coordinates. Figures 1 and 14 show examples
of using the ARAP energy from Section 5.4 to optimize for coordi-
nates that produce less elastic-looking deformations. In Figure 1,
the initial result was obtained by using weighted TV coordinates
to deform the Armadillo mesh. Fine-tuning the coordinates with
the surface ARAP energy resulted in fewer artifacts and more rigid-
looking deformations, as evidenced by the highlighted regions of
the figure.
Figure 14 demonstrates how the ARAP energy can be useful

in producing rigid and smooth looking deformations (refer to the
supplemental material for videos). To generate the animation, we
manually deformed the cage at a set of key-frames and inbetweened
the cage vertices for the rest of the frames. We used the key-frame
with the most extreme deformation of the cage as P′ when opti-
mizing the energy in Equation 18. Nonetheless, we see that the
entire animation is affected by the ARAP coordinates, making it
look overall more rigid.
In our implementation, we found it necessary to use a signifi-

cantly larger learning rate for the parameters of the local rotations
compared to the network weights (0.1 and 10−3, respectively). We
trained the model for a total of 1200 steps, decaying the learning
rate by a factor of 0.8 every 150 steps.

Inverse deformation. Our model is fully differentiable, allowing
us to solve inverse deformation problems. In Figure 12 we created

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

255:14 • Dodik et al.

Fig. 14. Visualizing the 3D variational barycentric coordinates during an

animation generated by inbetweening deformations. The Dirichlet coor-

dinates have a more non-local influence compared to the Weighted TV

objective, resulting in less abrupt bends near the tip of the tail. Nonetheless,

we are able to make the Weighted TV deformation more rigid looking by

minimizing the ARAP objective. Note that, even though the distortion was

minimized only between the undeformed shape and the shape at the 36th
frame, the ARAP optimization improves the look of the entire animation.

a high-resolution soft-body physics simulation in Blender to use
as the target for optimization. As shown by our results, optimizing
the positions of the cage vertices alone is insufficient to faithfully
reproduce the simulation result. By comparison, jointly optimizing
the weights of the network produces fewer artifacts and achieves a
significantly lower reproduction error. Once optimized, these coor-
dinates could be used to transfer the deformations due to a physics
simulation from low-resolution meshes onto high-resolution ones
similar to Sacht et al. [2015] or onto the same mesh after an editing
operation that changed the mesh topology.

In Figure 15, we show the effect of increasing the cage resolution
by 40% during inverse optimization of a human body mesh [Loper
et al. 2015]. As expected, the additional degrees of freedom intro-
duced by the new cage vertices result in a better fit to the target
shape for both the cage-only and the joint cage-and-coordinates op-
timization. However, as evidenced by the the mean absolute vertex
distance, jointly optimizing for the coordinates alongside the cage
vertices improves the results significantly even on the lower resolu-
tion cage. This implies that the additional degrees of freedom in a
cage are not as useful in the presence of coordinates that are better
suited for a specific use-case, further validating our deformation-
aware approach to designing generalized barycentric coordinates.
In these experiments, we fine-tuned the network for a total of

10000 steps for theArmadillomesh, and 15000 steps for theHuman
mesh, with an initial learning rate of 5 · 10−4. During the first 6000
steps, we decayed the learning rate by a factor of 0.8 every 200 steps.
We used a larger learning rate of 5 · 10−3 for the cage rotation, scale,
and vertex positions.

8 DISCUSSION AND CONCLUSION

Alternative deformation-aware energies. We have demonstrated
how to incorporate the surface as-rigid-as-possible energy into our
formulation as a proof-of-concept. This work represents the first

Fig. 15. Increasing the cage resolution by 40% results in an overall decrease

in approximation error. Notably, even when using lower-resolution cage, the

joint optimization leads to a 37% error reduction.

step towards other deformation-aware barycentric coordinates. For
example, all of the deformation-aware energies we worked with
are restricted to the surface of an interior mesh. Given that the
deformation field is volumetric, a reasonable alternative would be to
use a volumetric deformation energy, such as the ones enumerated
by Abulnaga et al. [2023]. Since our model is grid-free, it would be
necessary to find a way of computing the volumetric deformation
gradient required by volumetric deformation energies.

Alternative inverse problems. In addition to the inverse deforma-
tion problem presented in Figure 12, our method can help tackle
other inverse problems. For example, our experiment requires the
existence of dense vertex-to-vertex correspondences between two
meshes. This points to a natural direction for future work, namely
solving inverse cage-based deformation problems while relying only
on sparse correspondences. Pushing this idea further, one might
consider combining our inverse deformation framework with an
inverse rendering loss, similar to Peng et al. [2021], thus completely
eliminating the need for 3D reconstructions or correspondences.
As an alternative future direction, one could consider amortizing
a physics simulation over multiple frames—or possibly even over
an entire dataset—to create coordinates specific to a single class of
shapes.

Performance. We see multiple viable avenues for improving the
performance of our model. It seems likely that a stochastic finite-
difference estimator would reduce the memory and compute cost
of computing first-order smoothness energies. Furthermore, our
algorithm requires us to find all valid simplices for every interior
sample in a brute-force manner. Future work might instead consider
applying an acceleration data structure to improve the computa-
tional complexity of this step. Lastly, while we already use Tiny
CUDA NN [Müller 2021] in our implementation, we were unable to
exploit the fully-fused neural networks offered by the library due
to the limitations of our hardware.

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

VBC • 255:15

Fig. 16. Our Dirichlet, TV, and weighted TV coordinate functions, compared to the basis functions produced by Mean Value Coordinates [Floater 2003; Ju et al.

2005], Harmonic Coordinates [Joshi et al. 2007], and Local Barycentric Coordinates [Zhang et al. 2014] and on three different shape.

Limitations. Because of the pruning heuristic from Section 6.3,
our coordinates are limited to a star-shaped neighborhoods of cage
vertices. In practice, this means that a slight bend of a straight cage
into a concavity can change the coordinates. To address this, one
could consider not eliminating virtual simplices that cross the cage
boundary, but rather modifying the pruning heuristic to be based
on the geodesic distance between simplex vertices instead of edge
lengths. However, our method would then no longer be grid-free
due to the geodesic distance solver.

Conclusion. Our work departs from existing methods for general-
ized barycentric coordinates through a fresh theoretical perspective
and computational approach. By relying on the machinery of neural
fields, we realize a practical algorithm and demonstrate its use-
fulness for a number of applications. Our work represents a key
step toward practical deformation-aware generalized barycentric
coordinates.

ACKNOWLEDGMENTS

We thank Prof. Mirela Ben-Chen for discussion and feedback during
the course of this project.
The MIT Geometric Data Processing group acknowledges the

generous support of Army Research Office grants W911NF2010168
and W911NF2110293, of Air Force Office of Scientific Research

award FA9550-19-1-031, of National Science Foundation grant CHS-
1955697, from the CSAIL Systems that Learn program, from the
MIT–IBM Watson AI Laboratory, from the Toyota–CSAIL Joint Re-
search Center, from a gift from Adobe Systems, and from a Google
Research Scholar award.
The MIT Scene Representation group acknowledges support of

the National Science Foundation under grant 2211259, the Singapore
DSTA under DST00OECI20300823, the Amazon Science Hub, the
Toyota Research Institute, and the MIT-IBM Watson AI Laboratory.

REFERENCES

S Mazdak Abulnaga, Oded Stein, Polina Golland, and Justin Solomon. 2023. Symmet-
ric Volume Maps: Order-Invariant Volumetric Mesh Correspondence with Free
Boundary. ACM Transactions on Graphics (TOG) 42, 3 (2023).

Noam Aigerman, Kunal Gupta, Vladimir G. Kim, Siddhartha Chaudhuri, Jun Saito, and
Thibault Groueix. 2022. Neural Jacobian Fields: Learning Intrinsic Mappings of
Arbitrary Meshes. ACM Trans. Graph. 41, 4, Article 109 (2022), 17 pages.

Dmitry Anisimov, Daniele Panozzo, and Kai Hormann. 2017. Blended barycentric
coordinates. Computer Aided Geometric Design 52-53 (2017), 205–216.

Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and Thomas
Pock. 2010. An Introduction to Total Variation for Image Analysis. De Gruyter, Berlin,
New York, 263–340. https://doi.org/doi:10.1515/9783110226157.263

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric
Model for Elastic Deformations. ACMTrans. Graph. 29, 4, Article 38 (jul 2010), 6 pages.
https://doi.org/10.1145/1778765.1778775

Lu Chen, Jin Huang, Hanqiu Sun, and Hujun Bao. 2010. Cage-based deformation
transfer. Computers & Graphics 34, 2 (2010), 107–118.

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

https://doi.org/doi:10.1515/9783110226157.263
https://doi.org/10.1145/1778765.1778775

255:16 • Dodik et al.

Nuttapong Chentanez, Miles Macklin, Matthias Müller, Stefan Jeschke, and Tae-Yong
Kim. 2020. Cloth and Skin Deformation with a Triangle Mesh Based Convolutional
Neural Network. Computer Graphics Forum 39, 8 (2020), 123–134.

Harold Scott MacDonald Coxeter. 1969. Introduction to Geometry. John Wiley & Sons.
Chongyang Deng, Qingjun Chang, and Kai Hormann. 2020. Iterative coordinates.

Computer Aided Geometric Design 79 (2020), 101861.
Michael S. Floater. 1997. Parametrization and smooth approximation of surface tri-

angulations. Computer Aided Geometric Design 14, 3 (1997), 231–250. https:
//doi.org/10.1016/S0167-8396(96)00031-3

Michael S. Floater. 2003. Mean value coordinates. Computer Aided Geometric Design 20,
1 (2003), 19–27.

Michael S. Floater. 2015. Generalized barycentric coordinates and applications. Acta
Numerica 24 (2015), 161–214. https://doi.org/10.1017/S0962492914000129

Michael S. Floater, Kai Hormann, and Géza Kós. 2006. A general construction of barycen-
tric coordinates over convex polygons. Advances in Computational Mathematics 24
(2006), 311–331.

Michael S. Floater, Géza Kós, and Martin Reimers. 2005. Mean value coordinates in 3D.
Computer Aided Geometric Design 22, 7 (2005), 623–631.

James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex Mesh Generation
via Volumetric PolyCube Deformation. Computer Graphics Forum 30, 5 (2011),
1407–1416.

K. Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary
Polytopes. In Proceedings of the Symposium on Geometry Processing (Copenhagen,
Denmark) (SGP ’08). 1513–1520.

K. Hormann and N. Sukumar (Eds.). 2017. Generalized Barycentric Coordinates in
Computer Graphics and Computational Mechanics. CRC Press, Boca Raton, FL.

Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng, Hujun
Bao, Baining Guo, and Heung-Yeung Shum. 2006. Subspace Gradient Domain Mesh
Deformation. In ACM SIGGRAPH 2006 Papers. 1126–1134.

Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-Rigid-as-Possible
Shape Manipulation. ACM Trans. Graph. 24, 3 (jul 2005), 1134–1141. https://doi.
org/10.1145/1073204.1073323

Timothy Jeruzalski, David IW Levin, Alec Jacobson, Paul Lalonde, Mohammad Norouzi,
and Andrea Tagliasacchi. 2020. NiLBS: Neural inverse linear blend skinning. arXiv
preprint arXiv:2004.05980 (2020).

Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J Guibas. 2020. Shape-
Flow: Learnable Deformation Flows Among 3D Shapes. In Advances in Neural
Information Processing Systems (NeurIPS 2020), H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (Eds.), Vol. 33. 9745–9757.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3 (2007),
71–es.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed
Triangular Meshes. ACM Trans. Graph. 24, 3 (2005), 561–566.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Xian-Ying Li and Shi-Min Hu. 2013. Poisson Coordinates. IEEE Transactions on Visual-
ization and Computer Graphics 19, 2 (2013), 344–352.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. 2021. Fourier Neural Op-
erator for Parametric Partial Differential Equations. In International Conference on
Learning Representations.

Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. 2007. GPU-Assisted
Positive Mean Value Coordinates for Mesh Deformations. In Proceedings of the
Fifth Eurographics Symposium on Geometry Processing (Barcelona, Spain) (SGP ’07).
117–123.

Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green Coordinates. ACM
Trans. Graph. 27, 3 (2008), 1–10.

Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and
Alec Jacobson. 2020. Neural Subdivision. ACM Trans. Graph. 39, 4, Article 124 (2020),
16 pages.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16.

Ran Luo, Tianjia Shao, HuaminWang,Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang.
2020. NNWarp: Neural Network-Based Nonlinear Deformation. IEEE Transactions
on Visualization and Computer Graphics 26, 4 (2020), 1745–1759.

Andrew L. Maas. 2013. Rectifier Nonlinearities Improve Neural Network Acoustic
Models.

Thomas Müller. 2021. tiny-cuda-nn. https://github.com/NVlabs/tiny-cuda-nn
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable Neural

Radiance Fields. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 5865–5874.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf

Sida Peng, Junting Dong, QianqianWang, Shangzhan Zhang, Qing Shuai, Xiaowei Zhou,
and Hujun Bao. 2021. Animatable Neural Radiance Fields for Modeling Dynamic
Human Bodies. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 14314–14323.

Yicong Peng, Yichao Yan, Shenqi Liu, Yuhao Cheng, Shanyan Guan, Bowen Pan, Guang-
tao Zhai, and Xiaokang Yang. 2022. CageNeRF: Cage-based Neural Radiance Fields
for Generalized 3DDeformation and Animation. In Thirty-Sixth Conference on Neural
Information Processing Systems.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. 2019. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378 (2019), 686–707.

Chengping Rao, Hao Sun, and Yang Liu. 2021. Physics-Informed Deep Learning for Com-
putational Elastodynamics without Labeled Data. Journal of Engineering Mechanics
147, 8 (2021), 04021043.

R. M. Rustamov, Y. Lipman, and T. Funkhouser. 2009. Interior Distance Using Barycen-
tric Coordinates. In Proceedings of the Symposium on Geometry Processing (Berlin,
Germany) (SGP ’09). 1279–1288.

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested Cages. ACM Transac-
tions on Graphics (TOG) 34, 6 (2015).

Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Geome-
try Processing, Alexander Belyaev and Michael Garland (Eds.). The Eurographics
Association. https://doi.org/10.2312/SGP/SGP07/109-116

Oded Stein, Eitan Grinspun,MaxWardetzky, and Alec Jacobson. 2018. Natural Boundary
Conditions for Smoothing in Geometry Processing. ACM Trans. Graph. 37, 2, Article
23 (2018), 13 pages.

Oded Stein, Alec Jacobson, Max Wardetzky, and Eitan Grinspun. 2020. A Smoothness
Energy without Boundary Distortion for Curved Surfaces. ACM Trans. Graph. 39, 3,
Article 18 (2020), 17 pages.

N. Sukumar and Ankit Srivastava. 2022. Exact imposition of boundary conditions with
distance functions in physics-informed deep neural networks. Computer Methods in
Applied Mechanics and Engineering 389 (2022), 114333.

Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Variational Autoencoders
for Deforming 3D Mesh Models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Jiong Tao, Bailin Deng, and Juyong Zhang. 2019. A fast numerical solver for local
barycentric coordinates. Computer Aided Geometric Design 70 (2019), 46–58.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear Subspace
Design for Real-Time Shape Deformation. ACM Trans. Graph. 34, 4, Article 57 (2015),
11 pages.

Ofir Weber, Mirela Ben-Chen, and Craig Gotsman. 2009. Complex Barycentric Coordi-
nates with Applications to Planar Shape Deformation. Computer Graphics Forum
28, 2 (2009), 587–597.

Ola Weistrand and Stina Svensson. 2015. The ANACONDA algorithm for deformable
image registration in radiotherapy. Medical Physics 42, 1 (2015), 40–53.

Martin Wicke, Mario Botsch, and Markus Gross. 2007. A Finite Element Method on
Convex Polyhedra. Computer Graphics Forum 26, 3 (2007), 355–364.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 641–676.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021. Geometry
Processing with Neural Fields. In Advances in Neural Information Processing Systems
(NeurIPS 2021), Vol. 34. 22483–22497.

Wang Yifan, NoamAigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-
Hornung. 2020. Neural Cages for Detail-Preserving 3D Deformations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 75–83.

Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. 2022.
NeRF-editing: geometry editing of neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18353–18364.

Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patanè, Sofien Bouaziz, Kai Hormann,
and Ligang Liu. 2014. Local Barycentric Coordinates. ACM Trans. Graph. 33, 6,
Article 188 (2014), 12 pages.

Paul Zhang, Josh Vekhter, Edward Chien, David Bommes, Etienne Vouga, and Justin
Solomon. 2020. Octahedral Frames for Feature-Aligned Cross Fields. ACM Trans.
Graph. 39, 3, Article 25 (apr 2020), 13 pages. https://doi.org/10.1145/3374209

ACM Trans. Graph., Vol. 42, No. 6, Article 255. Publication date: December 2023.

https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1016/S0167-8396(96)00031-3
https://doi.org/10.1017/S0962492914000129
https://doi.org/10.1145/1073204.1073323
https://doi.org/10.1145/1073204.1073323
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.2312/SGP/SGP07/109-116
https://doi.org/10.1145/3374209

	Abstract
	1 Introduction
	2 Related Work
	2.1 Generalized Barycentric Coordinates
	2.2 Neural Networks for Interpolation and Deformation

	3 Preliminaries
	4 Variational Barycentric Coordinates
	4.1 Model
	4.2 Decomposition of Barycentric Coordinates
	4.3 Analysis

	5 Optimization Objectives
	5.1 Total Variation
	5.2 Weighted Total Variation
	5.3 Dirichlet Energy
	5.4 As-Rigid-As-Possible Energy
	5.5 Inverse Deformation Energy

	6 Computational Model
	6.1 Neural Network Model
	6.2 Smoothing Discontinuities
	6.3 Accelerating The Model

	7 Results
	7.1 Validation
	7.2 Qualitative Results
	7.3 Comparison
	7.4 Deformation-Aware Coordinates

	8 Discussion and Conclusion
	Acknowledgments
	References

